Fuel Cells for Future Ships

Tuesday, March 09, 2004

By Ed Walsh, Office of Naval Research Public Affairs

As hybrid electric cars become more commonplace on America’s highways, the Navy is working to bring hybrid electric ships to the high seas. The Office of Naval Research (ONR) is developing innovative propulsion systems based on new fuel-cell technology for efficient generation of electrical power and greater design flexibility for future ships. To ensure a relatively quick transition to this promising technology, ONR is funding development of a method to extract hydrogen from diesel fuel. A diesel reforming system would take advantage of the relatively low cost of the fuel and the Navy’s established infrastructure for buying, storing and transporting it.

Unlike gas turbines and diesel engines, fuel cells do not require combustion, and therefore do not produce pollutants such as nitrogen oxide. Fuel cells are also far more efficient than combustion engines. ONR Program Officer Anthony Nickens explains that “the Navy’s shipboard gas turbine engines typically operate at 16 to 18 percent efficiency, because Navy ships usually sail at low to medium speeds that don’t require peak use of the power plant. The fuel cell system that ONR is developing will be capable of between 37 to 52 percent efficiency.”

Moreover, fuel cells will permit design of a “distributed” power system, since unlike conventional engines, they can be dispersed throughout the ship instead of being co-located with the ship’s shaft. This added flexibility will improve ship survivability. Nickens says that the Navy’s DD(X) land-attack destroyer program is very interested in fuel cell technology as a supplemental power source. Fuel cells combine improved efficiency, low emissions and design flexibility, all of which help slash shipbuilding costs—-a bottom-line goal of the Navy’s current “transformation” efforts.

ONR is testing a 500-kilowatt diesel fuel reformer, or integrated fuel processor, that is compatible with a proton exchange membrane (PEM) fuel cell, at the Department of Energy Idaho National Engineering and Environmental Laboratory in Idaho Falls. Reforming diesel is especially tricky due to the sulfur present in the fuel. The integrated fuel processor heats and vaporizes the diesel, then the sulfur in it is converted into hydrogen sulfide. The hydrogen sulfide is then exposed to zinc oxide, oxidizing the sulfur into sulfur dioxide and separating it from the hydrogen.

The testing will continue through June 2004 to prove out the reforming process. Meanwhile, ONR is looking at design approaches to reduce the size of the processor, which consists of an arrangement of valves, water-gas shift reactors, an oxidizer and other components, so that it won’t take up too much space aboard a Navy ship.

Maritime Reporter September 2014 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

Marine Power

Corvus Gains Support from WINN Initiative

Corvus Energy announced today the award of $1.3 million in repayable assistance from the Western Innovation (WINN) Initiative for its project to further develop the Corvus Energy Storage System.

Thrustmaster Announces Factory Expansion

Thrustmaster of Texas, a manufacturer of commercial marine propulsion products, signed a deal last week to expand its Houston-based production facility by 100,000 sqft (93,000 sq m).

Smith Brothers Chrtisten New Tug

Smith Brothers, Inc., Chesapeake Bay-based barge and marine equipment charter company, recently added the tug Capt. Kenneth to its fleet of inland and truckable tugs.

 
 
Maritime Careers / Shipboard Positions Maritime Contracts Maritime Standards Navigation Offshore Oil Pod Propulsion Ship Repair Ship Simulators Sonar Winch
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.2341 sec (4 req/sec)