Marine Link
Friday, March 29, 2024

Black Carbon in Arctic Blamed on Russia

Maritime Activity Reports, Inc.

February 4, 2017

 According to a new study published in the journal Proceedings of the National Academy of Sciences, 35% of black carbon in the Russian Arctic originates from residential heating sources, 38% comes from transport, while open fires, power plants, and gas flaring are responsible for only 12%, 9%, and 6% respectively. 

 
These estimates confirm previous work for some areas of the European Arctic, but for Siberia, the findings differ from previous research, which had suggested that contribution from gas flaring were much higher.
 
Black carbon, or soot, increases snow and ice melt by dulling the reflective surface and increasing the absorption of sunlight. Researchers say this is one reason that Arctic regions have warmed faster than any other area on the planet, with average temperatures there today over 4°C higher than the 1968-1996 average, according to the US National Oceanic and Atmospheric Association (NOAA).  Black carbon may also be contributing to the steep decline in summer Arctic sea ice coverage in recent decades.
 
“Reducing black carbon pollution holds some potential for climate change mitigation, especially in the Arctic, but in order to take effective action, we have to know where it is coming from. This study provides better data, but also shows that we need more information about source structure and spatial distribution of pollution in the Arctic,” explains IIASA researcher Zbigniew Klimont, who worked on the study.
 
The location of black carbon emissions matters, explains Klimont, because black carbon emitted from the sources closer to the Arctic leads to greater warming (per unit of emitted black carbon) compared to sources further from the region. “High-latitude sources are especially important. Even though China, for example, releases much more black carbon than Arctic regions, reductions there have less impact per kilogram than reductions in the Arctic.”
 
“There is widespread gas flaring in the Russian Arctic. Yet, the magnitude of gas flaring related black carbon and other combustion related emissions and the specific carbon-isotopic fingerprint are not very well understood. In order to better assess the role of black carbon pollution in the Arctic and to target its sources for mitigation, we need to measure the isotopic fingerprint of the gas flaring sources,” says Patrik Winiger, a researcher at Stockholm University in Sweden who led the study.
 

Subscribe for
Maritime Reporter E-News

Maritime Reporter E-News is the maritime industry's largest circulation and most authoritative ENews Service, delivered to your Email five times per week