US Navy Seeks to Transform Gas Turbine Technology

Press Release
Monday, November 05, 2012

Naval Research Laboritory (NRL) scientists study the complex physics of Rotating Detonation Engines (RDE's).

With its strong dependence on gas-turbine engines for propulsion, the U.S. Navy is always looking for ways to improve the fuel consumption of these engines. At the Naval Research Laboratory (NRL), scientists are studying the complex physics of Rotating Detonation Engines (RDEs) which offer the potential for high dollar savings by way of reduced fuel consumption in gas-turbine engines, explains Dr. Kazhikathra Kailasanath, who heads NRL's Laboratories for Computational Physics and Fluid Dynamics.

Many Navy aircraft use gas-turbine engines for propulsion, with the Navy's gas-turbine engines being fundamentally similar to engines used in commercial airplanes. The Navy also depends on gas-turbine engines to provide propulsion and electricity for many of its ships. Even as future ships move toward the model of an "all electric" propulsion system, they will still need gas-turbine engines to produce electricity for the propulsion system and other critical systems. So building a gas-turbine engine that can handle the Navy's requirements for its warfighting ships and provide a fuel-efficient engine is a high priority for researchers.

The gas-turbine engines the Navy uses today are based on the Brayton thermodynamic cycle, where air is compressed and mixed with fuel, combusted at a constant pressure, and expanded to do work for either generating electricity or for propulsion. To significantly improve the performance of gas-turbine engines, researchers need to look beyond the Brayton cycle to explore alternative and possibly more innovative cycles.

NRL researchers believe that one attractive possibility is to use the detonation cycle instead of the Brayton cycle for powering a gas-turbine. NRL has been on the forefront of this research for the last decade and has been a major player in developing Pulse Detonation Engines (PDEs).

The Rotating Detonation Engine (RDE) is an even more attractive and different strategy for using the detonation cycle to obtain better fuel efficiency. NRL researchers have constructed a model for simulating RDEs using earlier work done on general detonations, as a foundation.

NRL researchers believe that RDEs have the potential to meet 10% increased power requirements as well as 25% reduction in fuel use for future Navy applications. Currently there are about 430 gas turbine engines on 129 U.S. Navy ships. These engines burn approximately 2 billion dollars worth of fuel each year. By retrofitting these engines with the rotating detonation technology, researchers estimate that the Navy could save approximately 300 to 400 million dollars a year.

Like PDEs, RDEs have the potential to be a disruptive technology that can significantly alter the fuel efficiency of ships and planes; however, there are several challenges that must be overcome before the benefits are realized, explains Dr. Kailasanath. NRL scientists are now focusing their current research efforts on getting a better understanding of how the RDE works and the type of performance that can be actually realized in practice.
 

Maritime Reporter November 2014 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

Technology

NASSCO Cuts Steel on APT "ECO Tanker"

General Dynamics NASSCO started construction of another ship in its commercial shipbuilding backlog, starting construction of a second “ECO” tanker to be built

NRL Researchers Demo Ship-to-Shore Data Link

Scientists at the U.S. Naval Research Laboratory (NRL) along with Mercury Continuity (MC) have demonstrated the Tactical Reachback Extended Communications (TREC) system in the port of Miami.

Mermaid Wins Subsea Contract in Gulf of Thailand

Mermaid has secured a 2-year contract for its dive support vessel, ‘Mermaid Commander’, to provide subsea construction support in the Gulf of Thailand for a

Navy

NRL Researchers Demo Ship-to-Shore Data Link

Scientists at the U.S. Naval Research Laboratory (NRL) along with Mercury Continuity (MC) have demonstrated the Tactical Reachback Extended Communications (TREC) system in the port of Miami.

NASSCO Opens Bremerton Repair Facility

General Dynamics NASSCO celebrated the grand opening of its new location in Bremerton, Wash., yesterday. The facility will support the company’s recently-awarded contract to repair and maintain U.

NASSCO Opens New Facility for Naval Repair

General Dynamics NASSCO opened a new location yesterday in Bremerton, Wash. to support the company’s recently-awarded contract to repair and maintain U.S. Navy

Marine Power

Multraship Buys Three More Tugboats from Damen

Multraship and Damen Shipyards Group agreed on three new ASD (Azimuth Stern Drive) Tugs, all for delivery to Multraship in 2015. After delivery in Vietnam, scheduled

Waterjet-propelled Crewboat Delivered to Petrobras

BS Camburi, a 36-meter Monohull Crewboat built in Brazil by Arpoador Engenharia to the Petrobras type P2 specification has been launched and delivered.   Designed by Incat Crowther,

PIRIOU Delivers 53-meter FSIV

French boat builder PIRIOU has delivered the 11th of its 53- by 10-meter Fast Supply and Intervention Vessels (FSIV) to Suisse Outremer AG, to be operated by ABC Maritime AG.

 
 
Maritime Careers / Shipboard Positions Maritime Contracts Maritime Security Naval Architecture Navigation Pipelines Salvage Ship Electronics Ship Repair Shipbuilding / Vessel Construction
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.1551 sec (6 req/sec)