Study: Electrical Properties of Topological Insulators

SeaDiscovery.com
Monday, February 24, 2014
The NRL research team, left to right: Dr. Berend Jonker, Dr. Jeremy Robinson, Dr. Connie Li, and Dr. Olaf van't Erve. (Image: U.S. Naval Research Laboratory)

By Donna McKinney

Scientists at the U.S. Naval Research Laboratory (NRL) have demonstrated for the first time that one can electrically access the remarkable properties predicted for a topological insulator (TI). They used a ferromagnetic metal/tunnel barrier contact as a voltage probe to detect the spin polarization created in the topologically protected surface states when an unpolarized bias current is applied. This accomplishment identifies a successful electrical approach that provides direct access to the TI surface state spin system, significantly advances our fundamental understanding of this new quantum state, and enables utilization of the remarkable properties these materials offer for future technological applications. The results of this research have been published in Nature Nanotechnology (see http://www.nature.com/nnano/index.html and the digital object identifier 10.1038/nnano.2014.16).

Topological insulators constitute a new quantum phase of matter distinct from the classic dichotomy of simple metals and semiconductors. This phase was predicted in 2007 to exist in certain materials with high spin-orbit interaction, and confirmed a year later by spectroscopic measurements. While the bulk of a TI material is nominally an insulator, the surface layer (approximately one nanometer thick) is occupied by metallic states that are topologically protected from perturbations to their environment. TIs are expected to exhibit new behaviors and open horizons for science previously inaccessible with "conventional" materials. One of the most striking properties is that of spin-momentum locking—the spin of an electron in the TI surface state is locked at a right angle to its momentum. This consequently implies that when an unpolarized charge current flows in the topologically protected surface states, a net electron spin polarization should spontaneously appear whose amplitude and orientation are controlled by the charge current. This remarkable property has been anticipated by theory since 2010, but never measured by a transport experiment. Detecting this spin polarization directly as a voltage is key to understanding the fundamental properties of such materials, and interfacing them to electronic circuitry for future device applications.

The NRL team showed that a bias current indeed creates a net surface state spin polarization via spin-momentum locking in thin Bi2Se3 epitaxial films, and that this polarization was directly manifested as a voltage on a ferromagnetic metal contact. This voltage is proportional to the projection of the TI spin polarization onto the contact magnetization, is determined by the direction and magnitude of the bias current, and its sign is that expected from spin-momentum locking rather than a Rashba effect. Similar data are obtained for two different ferromagnetic tunnel barrier structures, Fe/Al2O3 and Co/MgO/graphene, demonstrating that these behaviors are independent of the details of the ferromagnetic contact.

This accomplishment offers a unique mechanism to generate and control spin in topological insulators, and may be useful for information processing. The International Technology Roadmap for Semiconductors, for example, has identified spin as a viable alternate state variable that should be developed for use in advanced electronic systems to complement the functionality provided by charge. The potential applications would certainly be long-term, because so little is known at this point, explains NRL's Dr. Berry Jonker. The existence of this new quantum phase of matter was just confirmed in 2008 and its properties yet to be fully understood, so it is a bit difficult to speculate on applications. But potential application areas include reconfigurable electronics, spintronics and quantum information processing.

The research team consists of Drs. Connie Li, Olaf van 't Erve, and Berend Jonker from NRL's Materials Science and Technology Division; Dr. Jeremy Robinson from NRL's Electronics Science and Technology Division; and Dr. Ying Liu and Prof. Lian Li from the University of Wisconsin, Milwaukee.

nrl.navy.mil
 

Maritime Reporter October 2014 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

Technology

Rolls-Royce Bags £12 mi Order from Myklebusthaug Management

Rolls-Royce has won a £12 million order to provide design, integrated power and propulsion systems and equipment for a highly advanced multipurpose service vessel

DNV GL “Modification Excellence Award” for Schiffahrt

Classification society DNV GL recognised that E.R. Schiffahrt has retrofitted seven ultra large container vessels to meet the highest energy efficiency standards

Kleven Wins New Yacht Contract

Norwegian ship builder Kleven has secured a new contract for a high specification, 116-metre long Expedition Support Vessel. The order is placed by Mr Graeme Hart,

News

USCG Medevacs Man From Sailboat off NC Coast

The Coast Guard medevaced an injured 62-year-old man from his sailboat Thursday approximately 100 miles east of Kill Devil Hills. Watchstanders at the Fifth

Findland Fairway Due Law

Based on the Finland Ministry of Transport and Communication’s maritime strategy, the Finnish parliament has announced a final and lawful decision on the new

ESSA's Fleet Upgradation Environmental Driven

State-controlled Exportadora de Sal SA de CV of Mexico ("ESSA"), one of the world’s largest salt exporters with a 10-million-ton annual production, has strengthened

Marine Science

Rolls-Royce Bags £12 mi Order from Myklebusthaug Management

Rolls-Royce has won a £12 million order to provide design, integrated power and propulsion systems and equipment for a highly advanced multipurpose service vessel

DNV GL “Modification Excellence Award” for Schiffahrt

Classification society DNV GL recognised that E.R. Schiffahrt has retrofitted seven ultra large container vessels to meet the highest energy efficiency standards

Wärtsilä Integrated Solutions for Maersk's AHTS Vessels

A new series of six Anchor Handling Tug Supply vessels to be built at the Kleven Verft AS in Norway for the Danish based Maersk Supply Service A/S - part of the A.

Electronics

From Security to Efficiency Modern Vessel Tracking

More so than many other fields of business, the maritime industry is focused on cost, which in turn gives the appearance of being conservative towards technology.

US Navy Evaluating SEWIP for LCS

The U.S. Navy is evaluating a scaled-down version of the Surface Electronic Warfare Improvement Program (SEWIP) system for potential incorporation on future Littoral Combat Ships (LCS),

New Hamburg Süd Ships to Feature Nacos Platinum Systems

L-3 SAM Electronics has announced  that, via its L-3 Marine Systems Korea subsidiary, it has been awarded a contract to provide its NACOS Platinum navigation, automation and control system,

 
 
Maritime Careers / Shipboard Positions Maritime Contracts Pipelines Pod Propulsion Port Authority Salvage Ship Electronics Ship Simulators Shipbuilding / Vessel Construction Winch
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.3514 sec (3 req/sec)