Minesto Develops Simulator for Underwater Vehicles

MarineLink.com
Thursday, June 27, 2013
Deep Green’s 8-shaped path on a sphere made with the HAMoS simulator. The Deep Green power plant is released in the current and finds its position on the trajectory where it operates stable.

Nordic marine energy technology company Minesto has developed a simulator to aid the development of its Deep Green marine power plant. According to Minestro, Deep Green is the only marine power plant that is able to cost efficiently produce electricity from low velocity tidal and ocean currents.

The simulator has been developed in-house by Minesto’s own research and development department, and is in essence based on two existing open source programs: one for commercial flight simulation and one for marine vehicle simulation.

The end result is an analysis and simulation tool called HAMoS, Hydrodynamic Analysis and Motion Simulation, believed to be the first in the world to simulate the movements of a flying tethered underwater vehicle. It will be used to predict how Minesto’s marine power plant, Deep Green, moves subsea in various ocean environments and depending on the plant’s design.

Minesto’s research, development and testing staff can change a number of variables in the power plant’s design to simulate and optimize its performance. The simulator can be used to predict Deep Green’s behavior and power performance in different real-life site conditions (i.e. the strength and direction of the currents).

Deep Green resembles a sweeping underwater kite, comprised of a wing and a turbine, which is secured to the seabed with a tether and moves with high speed in an 8-shaped path in the tidal or ocean current. Deep Green produces 100% renewable tidal energy.

New simulator enables more accurate estimates of the cost of energy

“The new simulator is a very valuable tool for us as a supplement to real life sea tests since it speeds up the development of Deep Green,” said Anders Jansson, CEO, Minesto. “We can easily scale and change different variables in the simulator to predict and optimize Deep Green’s power production performance with great accuracy. It is of great commercial value to be able to estimate the cost of energy more precisely at a specific location.”

HAMoS combines CFD analysis with a flight simulator and a simulator for marine vehicles. The CFD analysis is used to calculate lift, drag and added mass acting on the body. The flight simulator is used as the main simulation platform formulating the equations of motion, it utilizes both the results from CFD computations and also specific formulas for underwater motion from the marine vehicles simulator. In addition to this a tethered flying body, opposed to a free flying body, creates a computational stiff and difficult case which requires special attention.

The simulation works in five steps:

1. A parameterized CAD model is used to define the body to be simulated.
2. A potential flow CFD method calculates the hydrodynamic forces on the body.
3. The hydrodynamic forces, as a function of the body’s orientation and velocity, are fitted to polynomials with six degrees of freedom. These are combined with the non-hydrodynamic forces to obtain the global force resultant.
4. Through discrete integration the movement of the device can be obtained as a function of time.
5. The output power from the power plant is calculated from the modeled movement and performance data for the used turbine.

The simulator raises the understanding of the Deep Green power plant as it is possible to see how the kite moves and which forces the water current creates. The simulator enables Minesto to try new ideas like the geometrical shape, the flight path or the control system and get direct feedback for the effects on the performance.

In the future, HAMoS could be used for educational purposes like training of system operators at Minesto and the company’s end customers.

minesto.com

  • Pressure distribution on the Deep Green power plant made with CFD analysis.

    Pressure distribution on the Deep Green power plant made with CFD analysis.

Maritime Reporter August 2014 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

Technology

Trelleborg Report Optimistic for Port Investment

The latest 'Barometer Report' from Trelleborg's marine operations business sector, discusses the issues impacting ports and terminals around the globe, and reveals

New Generation of Turbochargers Announced

MAN Diesel & Turbo has announced the development of a new turbocharger series specifically matched to the requirements of two-stroke engines. For the first time ever,

Green Passenger Ferries from Faaborg Vaerft

The first full-electrical passenger ferry in composite is delivered to Ballerina AB in Stockholm, Sweden. Faaborg Vaerft A/S has delivered the first full-electrical passenger vessel,

Energy

The Switch to Deliver Full-Power Converter for Floating Power Plant

Vancouver-based Water Wall Turbine Inc. (WWT) has selected The Switch to provide a 500 kW full-power converter for its self-floating power plant. This new system

Maersk Sells Ven Drilling Barges

Danish shipping conglomerate A.P. Moller-Maersk said on Tuesday its offshore oil and gas drilling unit has sold its Venezuelan barge activities. Maersk Drilling

Upcoming Winter Tanker Market Same as Last Year?

Will the 2014/15 winter tanker market be a repeat of the previous one? Poten & Partners consider the question in their latest 'Poten Tanker Opinion'. As the

 
 
Maritime Careers / Shipboard Positions Maritime Security Maritime Standards Naval Architecture Navigation Pod Propulsion Port Authority Salvage Ship Electronics Winch
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.5864 sec (2 req/sec)