Deepwater Horizon Spill Causes Fish Abnormalities

Posted by Eric Haun
Tuesday, March 25, 2014
Oil near the Deepwater Horizon disaster spill source as seen during an aerial overflight on May 20, 2010. (Credit: NOAA)

The National Oceanic and Atmospheric Administration (NOAA) reported that results to a new study conducted by a team of NOAA and academic scientists suggest that crude oil from the 2010 Deepwater Horizon disaster causes severe defects in the developing hearts of bluefin and yellowfin tunas.

The findings, published in the Proceedings of the National Academy of Sciences on the 25th anniversary of the Exxon Valdez oil spill, show how the largest marine oil spill in United States history may have affected tunas and other species that spawned in oiled offshore habitats in the northern Gulf of Mexico.

Atlantic bluefin tuna, yellowfin tuna, and other large predatory fish spawn in the northern Gulf during the spring and summer months, a time that coincided with the Deepwater Horizon spill in 2010. These fish produce buoyant embryos that float near the ocean surface, potentially in harm’s way as crude oil from the damaged wellhead rose from the seafloor to form large surface slicks.

The new study shows that crude oil exposures adversely affect heart development in the two species of tuna and an amberjack species by slowing the heartbeat or causing an uncoordinated rhythm, which can ultimately lead to heart failure.

“We know from the 1989 Exxon Valdez spill in Prince William Sound that recently spawned fish are especially vulnerable to crude oil toxicity,” said Nat Scholz, Ph.D., leader of the ecotoxicology program at NOAA's Northwest Fisheries Science Center in Seattle. “That spill taught us to pay close attention to the formation and function of the heart.”

“The timing and location of the spill raised immediate concerns for bluefin tuna,” said Barbara Block, Ph.D., a study coauthor and professor of biology at Stanford University. “This spill occurred in prime bluefin spawning habitats, and the new evidence indicates a compromising effect of oil on the physiology and morphology of bluefin embryos and larvae.”

Recent studies are increasingly painting a more detailed picture of how oil-derived polycyclic aromatic hydrocarbons (PAHs) act on the heart. Earlier this year, the Stanford-NOAA team showed in a related paper published in Science (Brette et al. 343: 772) that Deepwater Horizon crude oil samples block excitation-contraction coupling -- vital processes for normal beat-to-beat contraction and pacing of the heart -- in individual heart muscle cells isolated from juvenile bluefin and yellowfin tuna.

“We now have a better understanding why crude oil is toxic, and it doesn’t bode well for bluefin or yellowfin embryos floating in oiled habitats.” said Block. “At the level of a single heart muscle cell, we’ve found that petroleum acts like a pharmacological drug by blocking key processes that are critical for cardiac cell excitability.”

This mechanism explains why the team observed a range of cardiac effects in the developing hearts of intact embryos in the present study. “We directly monitored the beating hearts of living fish embryos exposed to crude oil,” said Dr. John Incardona, NOAA research toxicologist and the study’s lead author. “The tiny offspring of tunas and other Gulf species are translucent, and we can use digital microscopy to watch the heart develop.”

The major difficulty facing the researchers was access to live animals. Tunas are difficult to raise in captivity and few facilities exist worldwide with spawning fish. In the open ocean, fragile fish embryos and larvae are mixed with many other types of plankton, and they usually don’t survive the rough conditions in a net towed near the surface. This made it close to impossible to assess developmental cardiotoxicity in samples collected near the Deepwater Horizon surface oil slicks.

To work around this challenge, the international team brought the oil to the fish. Samples of crude oil were collected from the damaged riser pipe and surface skimmers. The samples were then transported to the only land-based hatcheries in the world capable of spawning tunas in captivity.

This approach allowed the scientists to design environmentally relevant crude oil exposures for bluefin tuna and yellowfin tuna at marine research facilities in Australia and Panama, respectively. Luke Gardner, an Australian native post-doctoral associate from Stanford University and co-author on the PNAS paper, was vital in helping the team investigate the bluefin.

“It is challenging to maintain bluefin in culture and we were privileged to have successfully tested the crude oil in Australian facilities, the only on-land hatchery that has bluefin tuna in culture. This gave us access to tuna embryos and allowed us to study the developmental toxicity of oil,” said Gardner. The pioneering effort to develop new testing methods was also led by Martin Grosell, Ph.D., at the University of Miami.

The new research adds to a growing list of fish that are affected by crude oil. “This fits the pattern,” said Incardona. “The tunas and the amberjack exposed to Deepwater Horizon crude oil were impacted in much the same way that herring were deformed by the Alaska North Slope crude oil spilled in Prince William Sound during the Exxon Valdez accident.”

Crude oil is a complex mixture of chemicals, some of which are known to be toxic to marine animals. Past research has focused in particular on PAHs, which can also be found in coal tar, creosote, air pollution and stormwater runoff from land. In the aftermath of an oil spill, PAHs can persist for many years in marine habitats and cause a variety of adverse environmental effects.

Developmental abnormalities were evident in bluefin and yellowfin tunas at very low concentrations, in the range of approximately one to 15 parts per billion total PAHs. These levels are below the measured PAH concentrations in many samples collected from the upper water column of the northern Gulf during the active Deepwater Horizon spill phase.

Severely affected fish with heart failure and deformed jaws are likely to have died soon after hatching. However, the NOAA team has shown in previous work that fish surviving transient crude oil exposures with only mild effects on the still-forming heart have permanent changes in heart shape that reduce swimming performance later in life.

“This creates a potential for delayed mortality,” said Incardona. “Swimming is everything for these species.”

The nature of the injury was very similar for all three pelagic predators, and similar also to the response of other marine fish previously exposed to crude oil from other geologic sources. Given this consistency, the authors suggest there may have been cardiac-related impacts on swordfish, marlin, mackerel, and other Gulf species. “If they spawned in proximity to oil, we’d expect these types of effects,” said Incardona.

The research was funded by NOAA as part of the on-going Natural Resource Damage Assessment for the Gulf ecosystem following the April 20, 2010 Deepwater Horizon oil spill. Contributing to the findings in addition to NOAA and Stanford University were researchers from the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences and the University of the Sunshine Coast in Queensland, Australia.

noaa.gov

  • Yellowfin tuna in a tank at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)

    Yellowfin tuna in a tank at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)

  • A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil during embryonic development (bottom). The oil-exposed larva shows a suite of morphological abnormalities including fluid accumulation from heart failure and poor growth of fins and eyes. (Image: John Incardona, NOAA)

    A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil during embryonic development (bottom). The oil-exposed larva shows a suite of morphological abnormalities including fluid accumulation from heart failure and poor growth of fins and eyes. (Image: John Incardona, NOAA)

  • Lincoln Marine Science Centre in South Australia. The paper’s authors partnered with the Lincoln Marine Science Centre in South Australia to examine Deepwater Horizon crude oil impacts to bluefin tuna. (Image: John Incardona, NOAA)

    Lincoln Marine Science Centre in South Australia. The paper’s authors partnered with the Lincoln Marine Science Centre in South Australia to examine Deepwater Horizon crude oil impacts to bluefin tuna. (Image: John Incardona, NOAA)

  • The Achotines Laboratory in Panama maintains a broodstock of yellowfin tuna in an in-ground, concrete tank. This specialized facility provides scientists with nearly year-round access to study captive tuna at various life stages, including the fragile embryo stage which was a focus of this study. (Image: John Incardona, NOAA)

    The Achotines Laboratory in Panama maintains a broodstock of yellowfin tuna in an in-ground, concrete tank. This specialized facility provides scientists with nearly year-round access to study captive tuna at various life stages, including the fragile embryo stage which was a focus of this study. (Image: John Incardona, NOAA)

  • Researchers examining tuna embryos at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)

    Researchers examining tuna embryos at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)

  • Yellowfin tuna in a tank at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)
  • A normal yellowfin tuna larva not long after hatching (top), and a larva exposed to Deepwater Horizon crude oil during embryonic development (bottom). The oil-exposed larva shows a suite of morphological abnormalities including fluid accumulation from heart failure and poor growth of fins and eyes. (Image: John Incardona, NOAA)
  • Lincoln Marine Science Centre in South Australia. The paper’s authors partnered with the Lincoln Marine Science Centre in South Australia to examine Deepwater Horizon crude oil impacts to bluefin tuna. (Image: John Incardona, NOAA)
  • The Achotines Laboratory in Panama maintains a broodstock of yellowfin tuna in an in-ground, concrete tank. This specialized facility provides scientists with nearly year-round access to study captive tuna at various life stages, including the fragile embryo stage which was a focus of this study. (Image: John Incardona, NOAA)
  • Researchers examining tuna embryos at the Achotines Laboratory in Panama. (Image: John Incardona, NOAA)
Maritime Reporter February 2015 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

News

Ferus Smit to Launch Newbuild Bulker

Ferus Smit will launch newbuild bulk carrier Arklow Breeze on Friday, March 20 at Westerbroek.   Arklow Breeze is the sixth and last vessel of a series to be

Petrobras Downgrade Shakes Market

Moody's shocked bond investors this week with a surprise two-notch downgrade that put Brazilian oil company Petrobras in junk territory. The move was seen by some investors as overly assertive,

This Week's Top Stories

The top stories this week covered everything from a DP system failure, a facelift for a WWII torpedo boat, and some mysterious tankers off the coast of Philadelphia.

Marine Science

Dredging Project to Protect Virginia Shoreline

Outer Continental Shelf sand will protect infrastructure, restore dunes and habitat   The U.S. Bureau of Ocean Energy Management (BOEM) and Naval Air Station Oceana at Dam Neck,

ST Engineering Y-O-Y Profits Slip

Singapore Technologies Engineering Ltd  reported today its full year financial results ended 31 December 2014 (FY2014) with a Group revenue of $6.54b compared to $6.

River Levels Decreasing in Argentina

River levels in Argentina are currently decreasing and they are expected to continue over the coming week. The bottleneck remains in the River Plate access channel,

Government Update

LA, Long Beach Ports Cooperation Approved

Federal regulators approve expanded working pact for Port of Long Beach and Port of Los Angeles to cooperate on congestion relief   The ports of Long Beach and

Mexico Approves 5 Shallow Water Areas in Round One Oil Tender

Mexico has approved the terms for five shallow water areas containing around 355 million barrels of oil equivalent as part of its Round One tender to open up the country's oil fields,

Dredging Project to Protect Virginia Shoreline

Outer Continental Shelf sand will protect infrastructure, restore dunes and habitat   The U.S. Bureau of Ocean Energy Management (BOEM) and Naval Air Station Oceana at Dam Neck,

Offshore Energy

Hercules Offshore Shares Fall 33%

Drilling contractor Hercules Offshore Inc's shares fell as much as 33 percent to a record low on Friday, a day after Deutsche Bank cut its price target on the company's stock to $0.

Brightoil Reports Steady Growth in Interim Results

Brightoil Petroleum (Holdings) Limited announced its interim results for the six months ended December 31, 2014, reporting steady growth over the period.   During the period,

Mexico Approves 5 Shallow Water Areas in Round One Oil Tender

Mexico has approved the terms for five shallow water areas containing around 355 million barrels of oil equivalent as part of its Round One tender to open up the country's oil fields,

Ocean Observation

US Keen in Maritime Cooperation with India

The US is keen in exploring great opportunities for co-operation on maritime issues with India, Admiral Jonathan Greenert, Chief of Naval Operations told members

Electronics Retrofit for Taiwanese Research Vessel

L-3 SAM Electronics has been awarded a contract to retrofit propulsion control and automation systems aboard the Taiwanese Navy’s Ta Kuan hydrographic and oceanographic research vessel.

Indonesia Upbeat Ahead of IORA Chair

Indonesia is gearing up to turn its foreign policy focus westward when its role as Indian Ocean Rim Association (IORA) chair begins later this year, reports Jakarta Post.

 
 
Maritime Contracts Maritime Standards Offshore Oil Pipelines Port Authority Ship Electronics Ship Repair Shipbuilding / Vessel Construction Sonar Winch
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.4101 sec (2 req/sec)