Testing Breaking Waves vs. Offshore Wind Turbines

Tuesday, November 16, 2010

More than 60 representatives of the international offshore wind industry gathered last week at the Offshore Wind Seminar, organized by the Maritime Research Institute Netherlands (MARIN) and the Energy research Centre of the Netherlands (ECN). This seminar included a visit to unique model tests in the MARIN facilities of breaking waves against an offshore wind turbine. This pilot series of model tests, with a special model of an offshore wind turbine with realistic flexibility, was completed and confirmed that breaking waves can induced significant oscillations and accelerations in the turbine.

Dr. Bas Buchner, Vice President of MARIN and leader of its Renewable ENergy Team (RENT), said, “MARIN wants to contribute to the development of reliable offshore renewable energy with this expertise from the maritime industry. Breaking waves can occur quite often in the shallow water areas of fixed wind turbines. Considering the relatively flexible foundations and towers of offshore wind turbines, we realized that the impulsive loading of breaking waves might result in resonant vibrations of the structure. This can have significant effects on the loads in the tower and accelerations in the critical mechanical systems at nacelle level . But we did not want to state this as a problem without a confirmation, so we developed these pilot model tests within our own R&D.”

For this purpose a special model was developed by MARIN’s specialists in the field of hydrodynamic loading and structural response. The model material and set-up was chosen such that the model had the correct flexibility and natural periods, a technique recently developed to investigate the vibrations of ships in extreme waves.

The initial results of the tests confirm that the tower can vibrate due to the breaking waves. Erik-Jan de Ridder, the responsible MARIN Project Manager, said, “When a large wave hit the foundation and tower, the tower started to vibrate at its natural periods. At nacelle level this resulted in large horizontal accelerations, in one case even up to 0.5g (5m/s2). Although these results need further analysis, the first observation is that these values are large and will impact the design and operation of the turbine.”

The test results will now be further analyzed together with MARIN’s partner ECN based on its extensive expertise in turbine design, mechanics and dynamics. Aart van der Pal, Manager Integral Wind Turbine Design of ECN, said, “Breaking wave loads can affect the extreme and fatigue loads on the foundation, tower, turbine blades, shaft, gearbox and generator, aspects that have not been studied in detail so far. This will need to be taken into account in the design process.”

Together with a number of other partners, MARIN and ECN are in the process of starting up a Joint Industry Project (JIP) with the acronym ‘WiFi’: Wave impacts on Fixed turbines. As independent institute in the Offshore and Shipping industry, MARIN has a lot of experience in leading JIPs. The objective of the WiFi JIP is to develop a design methodology for offshore wind turbines that includes the effect of steep and breaking waves.

 

Maritime Reporter October 2014 Digital Edition
FREE Maritime Reporter Subscription
Latest Maritime News    rss feeds

Technology

ClassNK Approves Niigata Dual-fuel Engine Design

Classification society ClassNK has granted approval to the design of the new 28AHX-DF dual-fuel engine developed by Niigata Power Systems Co., Ltd. The new engine

Subsea Defense & the Changing Paradigm of Submarine Programs

Technology and dynamic mission profiles have driven change in the defense industry, Hydro Group Plc Managing Director Doug Whyte, explores the changing paradigm of submarine programs,

From Security to Efficiency Modern Vessel Tracking

More so than many other fields of business, the maritime industry is focused on cost, which in turn gives the appearance of being conservative towards technology.

Energy

Fourth Rig Delivered to Perforadora Central

Keppel AmFELS LLC, a wholly owned US subsidiary of Keppel Offshore & Marine Ltd (Keppel O&M), has delivered the jackup rig, Coatzacoalcos, to Mexico’s Central Panuco S.

Massive LNG Absorber Shipped to Malaysia

Successful transport of 1,480t absorber for biggest LNG plant worldwide in Malaysia.   1,480 tons and a high center of gravity made the transport of an absorber

EU: Ships Will Measure CO2 Emissions

Shippers to begin monitoring from 2018; Environmental groups say law is weak, shippers favorable. The shipping sector will for the first time have to monitor

 
 
Maritime Careers / Shipboard Positions Maritime Contracts Maritime Security Maritime Standards Naval Architecture Pod Propulsion Salvage Shipbuilding / Vessel Construction Sonar Winch
rss | archive | history | articles | privacy | terms and conditions | contributors | top maritime news | about us | copyright | maritime magazines
maritime security news | shipbuilding news | maritime industry | shipping news | maritime reporting | workboats news | ship design | maritime business

Time taken: 0.2931 sec (3 req/sec)